新闻是有分量的

中投研究:AI芯片拥抱高速增长期(4)

2019-04-14 01:37栏目:财经
TAG:

图11 AI芯片产业链

  (一)芯片公司动作频频

  英特尔自上世纪八十年代专攻芯片以来,借助与微软的“Wintel”产业联盟称霸桌面和服务器CPU市场,但到了移动互联和大数据时代形势骤变:高通(Qualcomm)和联发科(MTK)几乎瓜分了移动CPU市场,英伟达借助GPU的并行计算能力在大数据时代趁势而起,甚至在桌面和服务器领域一直被英特尔压得喘不过气的AMD近几年股价也反弹明显。从2010年至今,英伟达的表现一骑绝尘,赛灵思在2018年下半年发力,高通的表现则弱于标普500和费城半导体指数,见图12。

  图12 五家芯片巨头的股价与总回报(2010年至2018年)

来源:Factset,中投研究院

  注:总回报包括股价回报、股息以及股息再投资回报

  来源:Factset,中投研究院

  1.英特尔

  英特尔正致力于把业务重心从传统的PC-centric转型到Data-centric,2013年以来完成的43笔收购交易中36笔都是服务于Data-centric,例如167亿美元收购FPGA公司Altera(2015)、4亿美元收购机器视觉公司Movidius(2016)、154亿美元收购自动驾驶公司Mobileye(2017)等[13]。英特尔的投资部门Intel Capital自1991年向超过1500家公司投资了至少120亿美元,近年投资聚焦到人工智能等领域,例如AI芯片初创公司Syntiant。英特尔2017年收入构成见图13,其中以CCG业务群为代表的传统业务仍贡献过半收入,在数据中心CPU市场占有率高达98%,但与AI、物联网、自动驾驶相关的业务正成为新的增长点。

图13 英特尔2017年收入构成

  图14 英特尔财务年度数据(NASDAQ:INTC)

注:英特尔2017财年截至2017年12月30日

  来源:中投研究院,Factset

  除了频频投资并购,英特尔在AI芯片方面的研发力度也明显加大,在CPU、FPGA甚至GPU等多个条线同时发力。2017年,英特尔发布了世界上首款视觉处理芯片(VPU)Movidius Myriad X,适用于无人机、VR/AR穿戴设备、智能家庭等应用场景,处理能力达每秒4万亿次;同年,还发布了业内首款14纳米级FPGA Stratix 10,较前代产品时钟频率翻倍、功耗降低70%,这两款芯片见图15;2018 年6 月,英特尔在推特上表示将在2020年推出独立GPU。

  图15 英特尔的Movidius VPU(左)和14纳米级FPGA(右)

来源:英特尔年报,中投研究院

  英特尔PC时代的盟友微软押注FPGA并继续与英特尔合作。微软选择FPGA用于深度神经网络(DNN)评估、Bing搜索排名以及软件定义联网(SDN)加速,在减少时延的同时将更多CPU算力释放到其他任务中。微软于2010年启动了“投石车”项目(Project Catapult),并于2015年开始大规模部署到Bing和Azure数据中心,以可控成本实现了极快的推理能力,Bing搜索的数据吞吐量提升了50%、时间延迟减少了25%。2016年,微软启动了“脑波”项目(Project Brainwave),探索通过英特尔的FPGA实现实时AI。2018年,Bing和Azure数据中心将部分算力由CPU迁移至FPGA,如今每个新增的服务器都把一个FPGA集成到独特的分布式架构中,形成的可配置互联计算层拓展了CPU计算层。

  2.英伟达